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Black hole entropy in string-generated gravity models
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The Euclidean action and entropy are computed in string-generated gravity models with quadratic curva-
tures, and used to argue that a negative mass extremal metric is the background for hygetbelic) (black
hole spacetimes being the curvature constant of the event horizon. The entropy associated with a black hole
is always positive fork={0, 1} family. The positivity of energy condition also ensures that kve—1
(extrema) entropy is non-negative.
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The area-entropy laWl] (in Planck unity S=A,/4G energy. In doing so, we find that the requirement of positivity
(whereA, is the area of the event horizon of the black holeof energy ensures the positivity ¢xtrema) black hole en-
and G is the Newton constantis one of most celebrated tropy.
results in general relativity. It is know[2] that the black In this paper, we also answer to the important question of
hole entropy is not simply given by one-quarter the areaywhat is the correct ground state to use in hyperbolic anti—de
particularly, if one allows higher curvature corrections to theSitter spacetimes. We reiterate the earlier assertions made by
Einstein action, such as Vanzo[9] and Birmingham 10] (see alsd11] for a discus-
sion in the context of the counterterm substraction method
that a negative mass extremal metric is the background for

| = LJ d""Ix = g(R—2A)+ alJ dn*1x hyperbolic black hole$12].
167G The action(1) with a=—4, b=1, admits the exact black
% \/__g( R;LV)\pRMV)\p—'_aR,uvRMV—F bR2)+ . (1) hole 50'Uti0n[6,7,13
d 2 n-1

There are some known reasons to explore black holes insuch  g2— —f(r)dt2+ _r+ r2> h;dxdx (3)
generalized gravity models. The Gauss-Bon(@B) term f(r) =
obtained by settinga=—4, b=1, originally motivated by
string theory, produces the most general Lagrangian retaining 12 2 8aA Ao
only second-order field equations, and admits exact spheri- f(r)y=k+ _;_\/1+ + K (4)
cally symmetric solutions in dimensioms+1>4 [3]. The 2a 2 n(n—1) rh

action (1) with a=b=0, n=4 corresponds to an effective
AdSs (bulk) action, deduced from a heterotic string via where a=167G(n—2)(n—3)a;, u iS a mass parameter,

heterotic-type | duality4], and h;; is the metric of an 1—1)-dimensional maximally
symmetric space/\/lﬂ_l with curvaturek=0, £1. For a

N2 12 symmetric spacé{,mp:—(gm\gyp—gﬂpgm)/(fz, the cos-
Isz d5x\/—_g[(R—2A)+m RumoRAM |, mological term is fixed A=—n(n—1)/22, where |

=¢/\1—al€? is the (effective curvature radius of AdS
2 bulk geometry. One also identifies the imaginary time of the
solution with a period3=4/f'(r ), namely
where, using AdS conformal field theofZFT) duality [5],
the coefficient of (RiemanR)term is fixed as 32G «;
=] 2/8NE E. B: ,
One can evaluate leading order corrections to the black nri+(n-2)k ri 17+(n—4)a k? 12
hole entropy by finding exact solutions of Einstein equations
supplemented by higher curvatuelC) terms, such as a wherer, is the largest positive root off(r) [cf., negative
Gauss-Bonnet term or quadratic interactions without oot in Eq.(4)], and 18=T is the Hawking temperature of a
(Riemann¥ term, or by treating HC terms as perturbation plack hole.
about the Einstein gravity. The first approach allows one to The extremal black holes are defined to have zero tem-
study global properties of the solutions with an asymptoti-perature, which require a vanishing denominator in .
cally (anti-)de Sitter branch2,3,6,7. In this context, a ques- Therefore, forn=4, there is an extremal=—1 solution,
tion may be raised as to whether higher derivative gravitiesvith a degenerate horizon at =r, satisfying
can have negative entro$,8], in particular, when the cur-
vature length of AdS geometry itself is in the order of HC |2 12 4
couplings. In order to address this issue and gain some in- rg:_, o= — _( 1— _a) (6)
sight into the problem, it is essential to calculate the total 2 4 12

A r 1% (r2+2a k)

®
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and a<1?/4. Here we need to be more precise. The above (h—1)V, , 143
solutions are extremal ones onlydf<12/4 holds. Because, I=— 6rG . i 3
in particular, for the couplinga=1%/4, one obtainsg 16mGp+1 (N=3)
=87r,12/[2nr2 +(n—4)kl?], and hence the Hawking n-1
Lt . V,_qr - _
temperature is finite, namely,=r , /712, whenn=4, inde- + n-it — (N=1Vo-1 B
pendent of the curvatudeof the horizon. That is to say, the 2(n=3)Gny1 167Gn 11
extremal Hawking temperature can be zero only for the cou- et
pling @<12/4 [13]. To present a better picture, we need toWhere Va-1=/d"""x Vh. One reads off the free energy

consider then>4 case. Wittk=—1, theT=0 (ﬂ:oo) con- from szlﬁ Whena=0, k=—1, there is no phase transi-

3r?
(kr2 —a k) + I—;]

Me, (10

dition yields tion since the black hole dominates oyex background for
all temperatures. Typically, a massless stateratl?/4>0
) n—2\ [ _ an(n—4) a has an initial positive free energy m=4 but zero free en-
re, e:(W)I 1 1—7|—2 (7)  ergy in n=6, so, for a>0 solutions, the behavior of
(n=2) Hawking-Page phase transition could depend on spacetime
o 5 dimensions, unlike in thee=0 cas€g16,1§.
(e e|| 2, \/ n-2\° 4(n-4) a 8 Sinceu, is temperaturgor horizonr , ) independent, the
Be e™\'n=a)|n— n n 2| ®) black hole entropy takes a remarkably simple form
For a=0, the critical horizorr .(<r.) given by the negative S— g2 JF Ay (n—1) 2ak 11
root of Eq.(7) coincides with the singularity at=0, so the B B 4G, (n=3) 2 |' 11)

space-time regiorr <r, has an internal infinity. Witha
>0, we can have non—de_genera;e horizons with hyperbo“%hereAszn,l r"~1 This derivation is essentially an ap-
geometry. Moreover, with a=17/4, ,one has +=Tc  plication of Eq.(10) and second law of black hole thermo-
=l y(n—4)/2n and hence T=n(ri—rg)/4mr . 1°=0,  gynamics. So, conceptually, it is fundamentally different
which is of course not a masslegBogomol'nyi-Prasad-  from the calculation if13] where entropy comes from first
Sommerfield BPS] state, sincg..>0. This corresponds to |5y, Equation(11) is the correct entropy formula even in a
a particular solution studied {i14], where the coupling’ is  fiat spacetime £ =0) [2], so the cosmological constant on
fixed in the starting action usinga8\ +n(n—1)=0. Notice  the AdS boundary is not dynamical. As a result, the central
that, fora=1%/4, u,=0 atr, =r,=1/\2 butT#0. Aclear  charge of an effective theory with a GB term allows one to

message is that only fque<0 (or u.>0) background one compute entropy without breaking Virasoro algebra near the
can consistently sef=0. The possible backgrounds are  horizon[19]. The entropy flow

e, — _ _ (n—1)A 2ak
N=4: u,=0, T= or pe<0, T=0, _
¢ V2 7l ¢ T (2 ) (12
n>4: ue=0, T>0 or uc>0, T=0, is always positive, because +2ak=0 should hold for

black hole interpretatiof7], and satisfies a generalized sec-

or we<0, T=0. ond law[1]. Moreover, since

It would be natural to call “ground state” the state with zero

_ n-4
temperature. We find that only a negative mass extremal state+ o_ (N=DVp-ary

4
nr
(n—2)kr2 +(n—4)ak?+ l—;]

can be stable under gravitatiori&nsoj perturbations. So a - 167G, 1(n—3)
massless state may not be the ground state fokthe 1 .
horizon, as expected i9,10,15. ~ Vioary T 8aT 13
The on-shell Gauss-Bonnet gravity action reads 167G, n—3’ (13
| = 1 f dn+1x \/—_g( _ 2R " 8A 9) one readily evaluates the thermodynamic energy to be
167G, 1 n—-3 n-—-3)°
i (N=1)Vys
It is known that the AdS spadé6] and the Horowitz-Myers E=TS+F=M- == ne=M—-Me,
soliton [17] are the appropriate backgrounds, respectively, ntl
for spherical k=1) and toroidal k=0) horizons. Fork n
=0, a zero mass ground state is still legitimate, and is an _ (N—1)Vyy kr1’2+ rl—;+ak2r’f4 _ (14)

acceptable backgrouri®,10]. For k= —1, by matching the 167Gy
asymptotic geometries between extremal and asymptotically

locally AdS metrics, one subtracts a non-zero mass extrem#&or k=1, sinceM =0, one hasE=M. Fork=—1, since
background10], restricting attention to the regiar=r, for M<0, E#M, in general. It is quite interesting that, far
the background and=r , for the black hole. The Euclidean- =—1, E=0 atr,=r,, andE>0 otherwise. Consider for
ized action, valid fok=0, £1, is thus evaluated to be concreteness the=4 case. Then, one has
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3V, 31V, [ 4da c
=~ 1676 “8anG | 1~ Tz)' 19 0
0.1
This energy is vanishing at the extremal state, and also in -
Nariai limit w=a—1%/4. As in the de Sitter casg2?2], the 0. 0.4 0.8 17
Nariai solution is not the ground state = 4. -0.1
The black hole entropy1l) is always positive for the 0.2
curvaturek=0, 1. However, fok=—1, one has '
Vapo o 13 6a Vs I3 12 02
S=4—G5 1—2)2SE=G—527/2(1—|—2>. -0.4

(16)

Thus, in particular, when one approaches a massless state a

a=12/4, the extremal entropy becomes negative. This is of |
course not an encouraging situation, because, as a micro-
scopic interpretation, the black hole entropy is the logarithm 10}
of the number ofquantum states and should be positive. It

is expected that additional higher order corrections, like that 5}
of R* terms, might cure this problem, so that a full theory

will yield only positive (extrema) entropy. One also notes

r
that, for thea=0 case, th&= — 1 extremal ground state has g8 1 1.2 1.4 '
positive entropyf11]

anl |n71
Se==— T3 17 . . .
Gprq 2(0+3) FIG. 1. The specific heatQ=dE/dT) vs horizon radii. The

parameters are fixed as=1, V, 1/4G,, =1, n=4; (a) k=—1

These results further provide a hint that a massless extremalpper ploj: a=1/4 (big single cusp a=1/12 (two cusp$, and
state is simply not allowed as a ground state. a=1/120(small single cusp (b) k=1 (lower plod: the curve with

As the first plot in Fig. 1 shows, the small horizon regime a=0 develops singularity at, =1/y2, so a smalllarge black
r<re has a single branch far=12/4 and two branches for hole has negativépositive specific heat, and two other curves
a<I|?/4. The first branch(cusp on the left, which might correspond tax=1/12 anda=1/4 (up to down.
have negative specific heat, has no black hole interpretation
since this region is not allowed due to a constraiﬁt rections, specifically, thed(a'3) corrections of type 1B
>2a. Here we should note that, wh&rs= — 1, n=4, forthe  string theory, to black hole thermodynamics is presented. It
couplinga=12/12, the Euclidean periog is negative in the has been shown thd20] the leading stringy or M-theory
rangei<r2<1%, ie. 0.408r,<0.707. So the Hawking corrections do not give rise to any phase transition for flat
temperature, which is a non-negative entity, should be deand hyperbolic horizons, although to a quotient of hyperbolic
fined asT=|B"Y|. That is, in the range 0.488 . <0.707, spaceH"Y/TI" there may arise new phase transitions. Further
the specific heat must be defined Wy=-p82 dE/(d elaboration and related discussion upon this issue appear in
(—B)). As a result, the second cusp in the first plot of Fig. 1[21].
should be mirror reflected, and hence can have a positive Given the importance of Gauss-Bonnet corrections to Ein-
specific heat. Nevertheless, for the coupling |%/4, the Eu-  Stein gravity, the extremal entropy is non-negative only if
clidean periodg is always positive, so the formulg= 12a<12. This constraint also enforces the positivity of en-
— B2 dE/(dp) is still effective. For this particular coupling, €rgy for thek=1 case. Followind6,22], we may calculate
the specific heat could be negative, which might signal thdéhe total masg¢quasi-local energyof k= +1 Schwarzschild
instability of a massless state. Because the energy conditionti-de Sitter spacetime using the surface energy-
E=0 always holds, the black holes of size of the extremamomentum tensor. In+1=5, we find
state or bigger than this have zero or positive specific heat,
and the corresponding solutions are thermodynamically 3V, 12
stable and globally preferred. T 167G

It is interesting that the minimum of the energy is also the
minimum of the temperature. As a result, the ratie/dT is
well behaved even k=1, which should be contrasted with
the result in Einstein gravityd=0). This might show the
emergence of a stable branch of small spherical black holes g_ f di d_E d_'“: i
and similar result was realized by Caldarelli and Klemm in T dudr. 462
[20], where a detailed treatment of M theory or stringy cor- (19

1 w
_+_
4 2

. (19

12«
|_2

In using a relatiordS= B dE, we arrive at

(r]’+6ar,)(1°-12a)+S,.
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This entropy is non-negative when<12/12, sinceS,=0 at VAE 1

r,=0. It is worth noting that the positivity of energy and e=1G —( 1- N) (26)
entropy in thek=+1 case also ensures that the —1 ex- 2\2

tremal entropy is non-negative.
Next we consider the actiof2). The metric solution that

solves the field equations, to the ordé(s), is is positive sinceN>1. The thermodynamic energy is
f(r)=k m, =, em (20) Ji
rN=k—-—+-= :
( rz 12 o E=£:F+TS=M+EK,

where 12 is related to A via (A 12+6)=2 ¢. Using
f(r,)=0, we expressn as a function of horizon radius:

3V3N2 2sri(l+ kI2)+k2I2 - s)
k:— — - —_— - .
(2 r2 4723 M 47213 | |14 ri 4 12
m=|k+—||r2+el k+ —||= — () (27)
2 12 N2 3V3

wherer . is the largest positive root of(r) andM is the — One readsvl from Eq.(21). The specific hea€=E/JT is
black hole mass. The inverse Hawking temperature is

2r2(17+3e)  k(12+4e)

3 N2
2mr3l4 _ 3VariN n
12(2r2 —klI?)  2r%2 —kI?

1 C
— - L2 3
BT T iz 27— 25 (kI 12 2 22 m

2&(12+2kr? ) (3K214+2kr212—r%)
r212(12—2kr?)(2r2 —kl?)

The extremak=—1 solution, implied byT=0, reads (28)

|2

& &
s mez—z l—|—2

2 . (23

A pleasing result is that the energy and specific heat are
vanishing at the extremal state defined by E2B), an im-
portant hint that the extremal state is the ground state. For
k=1, there is a discontinuity in specific heatrat=1/2,
even if e>0. This is partly because the solutions are only
perturbative and we have retained the terms only linear. in

Using these as background values ler — 1, we obtain an
Euclideanized action valid fok=0, +1 to be[23,24]

. V3N? 2r4 2| 6em? In thek=—1 case, however, the solutions are well behaved,
I= 4723 - |_2 - I_Z - 4 for examplq, the specific heat and entrqpy are positive when
* r,>r.. Adifference from thes=0 case is that now a small
3)2 e size black hole has a positive specific heat at finite coupling
| We end with a few remarks and future problems.

We have calculated leading order curvature corrections to

The last expression, independent of, will be in effect only ~ the black hole entropy with horizorls=0, = 1. In general,
to thek=—1 case. As usual, free energy is defined iby the entropy is not obta_uned .by evaluating t_he horizon area of
— BF. The resulting entropy is the unperturbed solution divided by It is encouraging
that the formulag11), (25) perfectly match with the entro-
pies calculated using Wald’s covariant approg2h|, where
1 2ri+3k|2 the entropy is(unambiguously determined by a local geo-
+ mr—g . (29 metric expression at the horizon. Presumably, these results
+ provide some elegant test of our knowledge of entropy in
string theory, for the higher curvature terms as the Gauss-
This entropy is essentially positive in the limit >1. It may = Bonnet invariant and/dRprR'”“’ interaction arise in most
be negative fok=—1 whenr2 <3 1%/2, but this limitis not  string theory as leading’ corrections.
allowed due to the energy conditid@=0. In the largeN In general, the hyperbolic AdS black hole with zéex-
limit, Eq. (25) approximates to usual forns=A_/4G. So trema) mass is not stable as a supersymmetric background.
one can expect that for large black holes the asymptotic reFhe stability of a hyperbolic horizon is therefore an impor-
gions feel only minor corrections due to the higher curvaturdant issue in dimensions+ 1>4, which might be essential
terms. The extremal entropy for a non-supersymmetric extension of AdS-CFT correspon-

3 2
S:ﬂzf:V3 r. 4N
B 4 8
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