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Black hole entropy in string-generated gravity models
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The Euclidean action and entropy are computed in string-generated gravity models with quadratic curva-
tures, and used to argue that a negative mass extremal metric is the background for hyperbolic (k521) black
hole spacetimes,k being the curvature constant of the event horizon. The entropy associated with a black hole
is always positive fork5$0, 1% family. The positivity of energy condition also ensures that thek521
~extremal! entropy is non-negative.
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The area-entropy law@1# ~in Planck units! S5AH/4G
~whereAH is the area of the event horizon of the black ho
and G is the Newton constant! is one of most celebrate
results in general relativity. It is known@2# that the black
hole entropy is not simply given by one-quarter the ar
particularly, if one allows higher curvature corrections to t
Einstein action, such as

I 5
1

16pGE dn11x A2g~R22L!1a1E dn11x

3A2g~RmnlrRmnlr1aRmnRmn1bR2!1•••. ~1!

There are some known reasons to explore black holes in
generalized gravity models. The Gauss-Bonnet~GB! term
obtained by settinga524, b51, originally motivated by
string theory, produces the most general Lagrangian retai
only second-order field equations, and admits exact sph
cally symmetric solutions in dimensionsn11.4 @3#. The
action ~1! with a5b50, n54 corresponds to an effectiv
AdS5 ~bulk! action, deduced from a heterotic string v
heterotic-type I duality@4#,

I 5
N2

4p2 l 3E d5xA2gF ~R22L!1
l 2

16N
RmnlsRmnlsG ,

~2!

where, using AdS conformal field theory~CFT! duality @5#,
the coefficient of (Riemann)2 term is fixed as 32pG a1
5 l 2/8N[«.

One can evaluate leading order corrections to the bl
hole entropy by finding exact solutions of Einstein equatio
supplemented by higher curvature~HC! terms, such as a
Gauss-Bonnet term or quadratic interactions without
(Riemann)2 term, or by treating HC terms as perturbatio
about the Einstein gravity. The first approach allows one
study global properties of the solutions with an asympto
cally ~anti–!de Sitter branch@2,3,6,7#. In this context, a ques
tion may be raised as to whether higher derivative gravi
can have negative entropy@6,8#, in particular, when the cur
vature length of AdS geometry itself is in the order of H
couplings. In order to address this issue and gain some
sight into the problem, it is essential to calculate the to
0556-2821/2003/67~6!/061501~5!/$20.00 67 0615
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energy. In doing so, we find that the requirement of positiv
of energy ensures the positivity of~extremal! black hole en-
tropy.

In this paper, we also answer to the important question
what is the correct ground state to use in hyperbolic anti–
Sitter spacetimes. We reiterate the earlier assertions mad
Vanzo @9# and Birmingham@10# ~see also@11# for a discus-
sion in the context of the counterterm substraction meth!
that a negative mass extremal metric is the background
hyperbolic black holes@12#.

The action~1! with a524, b51, admits the exact black
hole solution@6,7,13#

ds252 f ~r !dt21
dr2

f ~r !
1r 2(

i 51

n21

hi j dxidxj ~3!

f ~r !5k1
r 2

2a
7

r 2

2a
A11

8aL

n~n21!
1

4a m

r n
~4!

where a[16pG(n22)(n23)a1 , m is a mass paramete
and hi j is the metric of an (n21)-dimensional maximally
symmetric spaceM k

n21 with curvaturek50, 61. For a
symmetric spaceRmnlr52(gmlgnr2gmrgnl)/,2, the cos-
mological term is fixed L52n(n21)/2l 2, where l
5,/A12a/,2 is the ~effective! curvature radius of AdS
bulk geometry. One also identifies the imaginary time of t
solution with a periodb54p/ f 8(r 1), namely

b5
4p r 1l 2 ~r 1

2 12a k!

nr1
4 1~n22!k r1

2 l 21~n24!a k2 l 2
, ~5!

where r 1 is the largest positive root off (r ) @cf., negative
root in Eq.~4!#, and 1/b5T is the Hawking temperature of
black hole.

The extremal black holes are defined to have zero te
perature, which require a vanishing denominator in Eq.~5!.
Therefore, forn54, there is an extremalk521 solution,
with a degenerate horizon atr 15r e , satisfying

r e
25

l 2

2
, me52

l 2

4 S 12
4a

l 2 D , ~6!
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and a, l 2/4. Here we need to be more precise. The ab
solutions are extremal ones only ifa, l 2/4 holds. Because
in particular, for the couplinga5 l 2/4, one obtainsb
58pr 1l 2/@2nr1

2 1(n24)kl2#, and hence the Hawking
temperature is finite, namely,T5r 1 /p l 2, whenn54, inde-
pendent of the curvaturek of the horizon. That is to say, th
extremal Hawking temperature can be zero only for the c
pling a, l 2/4 @13#. To present a better picture, we need
consider then.4 case. Withk521, theT50 (b5`) con-
dition yields

r c, e
2 5S n22

2n D l 2S 17A12
4n~n24!

~n22!2

a

l 2D ~7!

mc, e5S 2r c, e
n22

n24 D F2

n
6AS n22

n D 2

2
4~n24!

n

a

l 2G . ~8!

For a50, the critical horizonr c(,r e) given by the negative
root of Eq.~7! coincides with the singularity atr 50, so the
space-time regionr ,r e has an internal infinity. Witha
.0, we can have non-degenerate horizons with hyperb
geometry. Moreover, with a5 l 2/4, one has r 15r c

5 l A(n24)/2n and hence T5n(r 1
2 2r c

2)/4pr 1l 250,
which is of course not a massless@Bogomol’nyi-Prasad-
Sommerfield~BPS!# state, sincemc.0. This corresponds to
a particular solution studied in@14#, where the couplinga8 is
fixed in the starting action using 8aL1n(n21)50. Notice
that, fora5 l 2/4, me50 at r 15r e5 l /A2 but TÞ0. A clear
message is that only forme,0 ~or mc.0) background one
can consistently setT50. The possible backgrounds are

n54: me50, T5
1

A2 p l
or me,0, T50,

n.4: me50, T.0 or mc.0, T50,

or me,0, T50.

It would be natural to call ‘‘ground state’’ the state with ze
temperature. We find that only a negative mass extremal s
can be stable under gravitational~tensor! perturbations. So a
massless state may not be the ground state for thek521
horizon, as expected in@9,10,15#.

The on-shell Gauss-Bonnet gravity action reads

I 5
1

16pGn11
E dn11x A2gS 2

2R

n23
1

8L

n23D . ~9!

It is known that the AdS space@16# and the Horowitz-Myers
soliton @17# are the appropriate backgrounds, respectiv
for spherical (k51) and toroidal (k50) horizons. Fork
50, a zero mass ground state is still legitimate, and is
acceptable background@9,10#. For k521, by matching the
asymptotic geometries between extremal and asymptotic
locally AdS metrics, one subtracts a non-zero mass extre
background@10#, restricting attention to the regionr>r e for
the background andr>r 1 for the black hole. The Euclidean
ized action, valid fork50, 61, is thus evaluated to be
06150
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Î 52
~n21!Vn21 r 1

n24 b

16pGn11 ~n23! F ~kr1
2 2a k2!1

3r 1
4

l 2 G
1

Vn21r 1
n21

2~n23!Gn11
2

~n21!Vn21 b

16pGn11
me , ~10!

where Vn215*dn21x Ah. One reads off the free energ
from F5 Î /b. Whena50, k521, there is no phase trans
tion since the black hole dominates overme background for
all temperatures. Typically, a massless state ata5 l 2/4.0
has an initial positive free energy inn54 but zero free en-
ergy in n56, so, for a.0 solutions, the behavior o
Hawking-Page phase transition could depend on space
dimensions, unlike in thea50 case@16,18#.

Sinceme is temperature~or horizonr 1) independent, the
black hole entropy takes a remarkably simple form

S5b2
]F

]b
5

AH

4Gn11
F11

~n21!

~n23!

2ak

r 1
2 G , ~11!

whereAH5Vn21 r 1
n21 . This derivation is essentially an ap

plication of Eq.~10! and second law of black hole thermo
dynamics. So, conceptually, it is fundamentally differe
from the calculation in@13# where entropy comes from firs
law. Equation~11! is the correct entropy formula even in
flat spacetime (L50) @2#, so the cosmological constant o
the AdS boundary is not dynamical. As a result, the cen
charge of an effective theory with a GB term allows one
compute entropy without breaking Virasoro algebra near
horizon @19#. The entropy flow

dS5
~n21!A

4Gn11r 1
S 11

2ak

r 1
2 D , ~12!

is always positive, becauser 1
2 12ak>0 should hold for

black hole interpretation@7#, and satisfies a generalized se
ond law @1#. Moreover, since

TS5
~n21!Vn21r 1

n24

16pGn11~n23! F ~n22!kr1
2 1~n24!ak21

nr1
4

l 2 G
2

Vn21r 1
n21

16pGn11

8pT

n23
, ~13!

one readily evaluates the thermodynamic energy to be

E5TS1F5M2
~n21!Vn21

16pGn11
me5M2Me ,

M5
~n21!Vn21

16pGn11
S kr1

n221
r 1

n

l 2
1ak2r 1

n24D . ~14!

For k51, sinceMe50, one hasE5M . For k521, since
Me,0, EÞM , in general. It is quite interesting that, fork
521, E50 at r 15r e , andE.0 otherwise. Consider for
concreteness then54 case. Then, one has
1-2



o

te
o

ic
hm
It
ha
ry
s
s

m

e
r

ti

d

. 1
iti

,
th
iti
a

ea
al

he

h

le
in

or

. It

flat
lic

her
ar in

in-
if

n-

gy-

s

RAPID COMMUNICATIONS

BLACK-HOLE ENTROPY IN STRING-GENERATED . . . PHYSICAL REVIEW D67, 061501~R! ~2003!
E5
3V3

16pG
m1

3l 2V3

64pG S 12
4a

l 2 D . ~15!

This energy is vanishing at the extremal state, and als
Nariai limit m5a2 l 2/4. As in the de Sitter case@22#, the
Nariai solution is not the ground state innÞ4.

The black hole entropy~11! is always positive for the
curvaturek50, 1. However, fork521, one has

S5
V3,k521 r 1

3

4G5
S 12

6a

r 1
2 D⇒Se5

V3

G5

l 3

27/2S 12
12a

l 2 D .

~16!

Thus, in particular, when one approaches a massless sta
a5 l 2/4, the extremal entropy becomes negative. This is
course not an encouraging situation, because, as a m
scopic interpretation, the black hole entropy is the logarit
of the number of~quantum! states and should be positive.
is expected that additional higher order corrections, like t
of R4 terms, might cure this problem, so that a full theo
will yield only positive ~extremal! entropy. One also note
that, for thea50 case, thek521 extremal ground state ha
positive entropy@11#

Se5
Vn21

Gn11

l n21

2(n13)/2
. ~17!

These results further provide a hint that a massless extre
state is simply not allowed as a ground state.

As the first plot in Fig. 1 shows, the small horizon regim
r ,r e has a single branch fora5 l 2/4 and two branches fo
a, l 2/4. The first branch~cusp! on the left, which might
have negative specific heat, has no black hole interpreta
since this region is not allowed due to a constraintr 1

2

.2a. Here we should note that, whenk521, n54, for the
couplinga5 l 2/12, the Euclidean periodb is negative in the
range 1

6 ,r 1
2 , 1

2 , i.e., 0.408,r 1,0.707. So the Hawking
temperature, which is a non-negative entity, should be
fined asT5ub21u. That is, in the range 0.408,r 1,0.707,
the specific heat must be defined byC52b2 dE/„d
(2b)…. As a result, the second cusp in the first plot of Fig
should be mirror reflected, and hence can have a pos
specific heat. Nevertheless, for the couplinga5 l 2/4, the Eu-
clidean periodb is always positive, so the formulaC5
2b2 dE/(db) is still effective. For this particular coupling
the specific heat could be negative, which might signal
instability of a massless state. Because the energy cond
E>0 always holds, the black holes of size of the extrem
state or bigger than this have zero or positive specific h
and the corresponding solutions are thermodynamic
stable and globally preferred.

It is interesting that the minimum of the energy is also t
minimum of the temperature. As a result, the ratiodE/dT is
well behaved even ifk51, which should be contrasted wit
the result in Einstein gravity (a50). This might show the
emergence of a stable branch of small spherical black ho
and similar result was realized by Caldarelli and Klemm
@20#, where a detailed treatment of M theory or stringy c
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rections, specifically, theO(a83) corrections of type IIB
string theory, to black hole thermodynamics is presented
has been shown that@20# the leading stringy or M-theory
corrections do not give rise to any phase transition for
and hyperbolic horizons, although to a quotient of hyperbo
spaceHn21/G there may arise new phase transitions. Furt
elaboration and related discussion upon this issue appe
@21#.

Given the importance of Gauss-Bonnet corrections to E
stein gravity, the extremal entropy is non-negative only
12a, l 2. This constraint also enforces the positivity of e
ergy for thek51 case. Following@6,22#, we may calculate
the total mass~quasi-local energy! of k511 Schwarzschild
anti–de Sitter spacetime using the surface ener
momentum tensor. Inn1155, we find

E5
3V3 l 2

16pG S 12
12a

l 2 D S 1

4
1

m

l 2D . ~18!

In using a relationdS5b dE, we arrive at

S5E dr1

T

dE

dm

dm

dr1
5

V3

4Gl2
~r 1

3 16a r 1!~ l 2212a!1S0 .

~19!

FIG. 1. The specific heat (C5dE/dT) vs horizon radii. The
parameters are fixed asl 51, Vn21/4Gn1151, n54; ~a! k521
~upper plot!: a51/4 ~big single cusp!, a51/12 ~two cusps!, and
a51/120~small single cusp!. ~b! k51 ~lower plot!: the curve with
a50 develops singularity atr 151/A2, so a small~large! black
hole has negative~positive! specific heat, and two other curve
correspond toa51/12 anda51/4 ~up to down!.
1-3
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This entropy is non-negative whena, l 2/12, sinceS050 at
r 150. It is worth noting that the positivity of energy an
entropy in thek511 case also ensures that thek521 ex-
tremal entropy is non-negative.

Next we consider the action~2!. The metric solution that
solves the field equations, to the orderO(«), is

f ~r !5k2
m

r 2
1

r 2

l 2
1

«m2

r 6
, ~20!

where l 2 is related to L via l 2(L l 216)52 «. Using
f (r 1)50, we expressm as a function of horizon radius:

m5S k1
r 1

2

l 2 D F r 1
2 1«S k1

r 1
2

l 2 D G[
4p2l 3

N2

M

3V3
, ~21!

where r 1 is the largest positive root off (r ) and M is the
black hole mass. The inverse Hawking temperature is

b5
1

T
5

2p r 1
3 l 4

r 1
2 l 2~kl212r 1

2 !22«~kl21r 1
2 !2

. ~22!

The extremalk521 solution, implied byT50, reads

r e
2.

l 2

2 S 11
«

l 2D , me.2
l 2

4 S 12
«

l 2D . ~23!

Using these as background values fork521, we obtain an
Euclideanized action valid fork50, 61 to be@23,24#

Î 5
V3N2

4p2l 3 F S m2
2r 1

4

l 2 D S 12
2«

l 2 D 2
6«m2

r 1
4

1
3l 2

4 S 11
«

l 2D G . ~24!

The last expression, independent ofr 1 , will be in effect only
to the k521 case. As usual, free energy is defined byÎ
5bF. The resulting entropy is

S5b2
]F

]b
5

V3 r 1
3

4

4N2

p l 3 F11
1

4N

2r 1
2 13kl2

r 1
2 G . ~25!

This entropy is essentially positive in the limitr 1@ l . It may
be negative fork521 whenr 1

2 ,3 l 2/2, but this limit is not
allowed due to the energy conditionE>0. In the largeN
limit, Eq. ~25! approximates to usual formS5AH/4G. So
one can expect that for large black holes the asymptotic
gions feel only minor corrections due to the higher curvat
terms. The extremal entropy
06150
e-
e

Se5
V3

4G

l 3

2A2
S 12

1

ND ~26!

is positive sinceN.1. The thermodynamic energy is

E5
] Î

]b
5F1TS5M1Ek ,

Ek5
3V3N2

4p2l 3 F2«r 1
4

l 4 S 11
kl2

r 1
2 D 1

k2l 2

4 S 11
«

l 2D G .

~27!

One readsM from Eq. ~21!. The specific heatC5]E/]T is

C5
3V3r 1

3 N2

p l 3 F 2r 1
2 ~ l 213«!

l 2~2r 1
2 2kl2!

1
k~ l 214«!

2r 1
2 2kl2

1
2«~ l 212kr1

2 !~3k2l 412kr1
2 l 22r 1

4 !

r 1
2 l 2~ l 222kr1

2 !~2r 1
2 2kl2!

G . ~28!

A pleasing result is that the energy and specific heat
vanishing at the extremal state defined by Eq.~23!, an im-
portant hint that the extremal state is the ground state.
k51, there is a discontinuity in specific heat atr 15 l /A2,
even if «.0. This is partly because the solutions are on
perturbative and we have retained the terms only linear in«.
In thek521 case, however, the solutions are well behav
for example, the specific heat and entropy are positive w
r 1.r e . A difference from the«50 case is that now a sma
size black hole has a positive specific heat at finite coup
3,N,`.

We end with a few remarks and future problems.
We have calculated leading order curvature correction

the black hole entropy with horizonsk50, 61. In general,
the entropy is not obtained by evaluating the horizon area
the unperturbed solution divided by 4G. It is encouraging
that the formulas~11!, ~25! perfectly match with the entro
pies calculated using Wald’s covariant approach@25#, where
the entropy is~unambiguously! determined by a local geo
metric expression at the horizon. Presumably, these res
provide some elegant test of our knowledge of entropy
string theory, for the higher curvature terms as the Gau
Bonnet invariant and/orRmnlrRmnlr interaction arise in mos
string theory as leadinga8 corrections.

In general, the hyperbolic AdS black hole with zero~ex-
tremal! mass is not stable as a supersymmetric backgrou
The stability of a hyperbolic horizon is therefore an impo
tant issue in dimensionsn11.4, which might be essentia
for a non-supersymmetric extension of AdS-CFT corresp
1-4



it
on
w
o
b

for
m
to
up
i-
U,

RAPID COMMUNICATIONS

BLACK-HOLE ENTROPY IN STRING-GENERATED . . . PHYSICAL REVIEW D67, 061501~R! ~2003!
dence. We find that a negative massk521 extremal back-
ground, which has the lowest energy configuration in
asymptotic class, is stable under gravitational perturbati
when a/ l 2!1, and the potential is bounded from belo
~work in preparation!. It would be interesting in this case t
investigate the thermal phase structures and conformal
havior at infinity by coupling the theory with scalars.
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